(secx-1)(sec+1)=tan^2x

Simple and best practice solution for (secx-1)(sec+1)=tan^2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (secx-1)(sec+1)=tan^2x equation:


Simplifying
(secx + -1)(sec + 1) = tan2x

Reorder the terms:
(-1 + cesx)(sec + 1) = tan2x

Reorder the terms:
(-1 + cesx)(1 + ces) = tan2x

Multiply (-1 + cesx) * (1 + ces)
(-1(1 + ces) + cesx(1 + ces)) = tan2x
((1 * -1 + ces * -1) + cesx(1 + ces)) = tan2x
((-1 + -1ces) + cesx(1 + ces)) = tan2x
(-1 + -1ces + (1 * cesx + ces * cesx)) = tan2x
(-1 + -1ces + (1cesx + c2e2s2x)) = tan2x
(-1 + -1ces + 1cesx + c2e2s2x) = tan2x

Solving
-1 + -1ces + 1cesx + c2e2s2x = an2tx

Solving for variable 'c'.

Reorder the terms:
-1 + -1an2tx + -1ces + 1cesx + c2e2s2x = an2tx + -1an2tx

Combine like terms: an2tx + -1an2tx = 0
-1 + -1an2tx + -1ces + 1cesx + c2e2s2x = 0

The solution to this equation could not be determined.

See similar equations:

| 5-12a= | | 2x+3(x+1)=9+2x | | x^3-2x^2-6-3x=0 | | 2a(-8a+3a)=-16a^2+6a^2 | | 5x-4[x-6]=-11 | | 3(x-4)=2x-6-x | | d=2+-4t+-16t^2 | | d=-16t^2-4t+2 | | 7y^2-y-12=0 | | 3z+z=4 | | 3/4m-1/4m=1 | | 3/4m-1/4m | | 640=x=(x/4) | | 9+2x=8x+1 | | x=10-0.2x | | 6x+8=16x-32 | | 17+3x=7x+41 | | x^2-8*log(x)-5=0 | | 11x^2-12x-4=0 | | x^2-8*ln(x)-5=0 | | 16x^4-225=0 | | 1f/5-22=25 | | 3(3s+8)=141 | | 6(2l+1)=18 | | 4-2x=44-10x | | H=4.5+-16t^2 | | 3(a-6)=51 | | (u-10)*8=72 | | 3y-8=-2y+7 | | H=-16t^2+4.5 | | 6x+10=2(4x-2) | | D=2/75x^2-4/3x-32/3 |

Equations solver categories